Tradicionalmente, o café é uma das culturas mais plantadas no Brasil, sendo o país detentor de tecnologias de produção, processamento e beneficiamento para esse produto. Entretanto, historicamente, o interesse dos produtores, a busca por melhorias de qualidade e incentivos à pesquisa foram sempre secundários para o Coffea canephora em relação ao Coffea arabica, resultando numa escassez de informações acerca, principalmente, da pós-colheita para essa espécie. Assim, objetivou-se, com este trabalho, estudar a cinética de secagem, as propriedades físicas e higroscópicas dos frutos de Coffea canephora, além de caracterizar o processo de torrefação do produto beneficiado. Foram utilizados frutos de C. canephora colhidos manualmente numa plantação comercial no município de Nova Santa Helena (MT), e o produto beneficiado foi adquirido na Cooperativa dos Cafeicultores da Região de Lajinha (Cocafé), Lajinha (MG). Foram determinadas as propriedades higroscópicas e termodinâmicas durante a dessorção e adsorção da água nos frutos para diferentes condições psicrométricas do ar, a cinética e as propriedades termodinâmicas da secagem dos grãos para diferentes temperaturas do ar e as principais propriedades físicas dos frutos ao longo do processo de secagem (ângulo de repouso, massas específicas aparente e unitária, porosidade, massa de mil frutos, esfericidade, circularidades, volume, área, diâmetro equivalente, dimensões características relação superfície-volume e a contração volumétrica unitária e aparente). Avaliou-se, também, para o processo de torrefação do produto beneficiado, a relação entre o tempo e a temperatura de torrefação que resulta em uma bebida de melhor qualidade, além de observar o comportamento de algumas características físicas dos grãos (índice de expansão volumétrica aparente, massa específica aparente, teor de água e cor) ao longo da torra. Os resultados obtidos permitiram concluir que: a) como ocorre para a maioria dos produtos higroscópicos, o teor de água de equilíbrio dos frutos de C. canephora foi diretamente proporcional à umidade relativa e decresce com o aumento de temperatura para um mesmo valor de umidade relativa, sendo o modelo Sigma-Copace, o que melhor se ajustou aos dados experimentais. Com a redução do teor de água, ocorreu aumento da energia (calor isotérico de dessorção) necessária para retirar água do produto e aumentou a energia liberada (calor isostérico de adsorção) pela adsorção da água no produto. Além disso, para um mesmo valor de teor de água, os valores do calor isostérico integral de dessorção foram maiores que os de adsorção. Tendência muito semelhante à apresentada pelo calor isostérico foi observada para a entropia diferencial; b) Todas as propriedades físicas estudadas foram influenciadas pelo teor de água, sendo que, à exceção da relação superfície-volume, todas se reduziram ao longo da secagem. Um polinômio de grau três foi o que melhor descreveu a contração volumétrica aparente e unitária dos frutos de C. canephora; c) Os modelos de Page e Midilli foram os que melhor representaram as curvas de secagem dos frutos de C. canephora. O coeficiente de difusão efetivo aumentou com a elevação da temperatura do ar de secagem, apresentando valores de 2,282 × 10 -11 a 4,316 × 10 -11 m 2 s -1 , para a faixa de temperatura de 40 a 60 °C. A energia de ativação para o processo de difusão foi de 38,016 kJ mol -1 e as propriedades termodinâmicas (entalpia, entropia e energia livre de Gibbs de ativação) aumentaram com a elevação da temperatura de secagem; d) A temperatura da massa de grãos, a temperatura de torrefação, a perda de massa dos grãos e o tempo apresentaram uma relação de dependência linear entre si e com o ponto de torra. Os grãos de C. canephora receberam sua melhor avaliação pelo teste de xícara quando torrados nas temperaturas de 247, 274 e 296 °C até o ponto de torra médio claro, e para a torra média, quando utilizada a temperatura de 247 °C. De modo geral, o café perdeu qualidade quando torrado na temperatura mais elevada (308 °C) e à medida que se aumentou o grau de torra. O teor de água reduziu continuamente até a torra média clara, e, de modo geral, houve uma redução da massa específica aparente e das coordenadas de cor L * , a * e b * , além do aumento de volume dos grãos, principalmente no final do processo de torrefação para todas as temperaturas de torra utilizadas. À exceção da massa específica aparente, nenhuma das propriedades físicas analisadas apresentou correspondência com a avaliação de qualidade pelo teste de xícara.
Traditionally, coffee is one of the most explored cultures in Brazil and the country owns the productive and processing technologies of this product. However, the producer’s interest, the search of quality improvements and research support were historically on a secondary basis for Coffea canephora in comparison with Coffea arabica. This trend resulted in lack of information, mostly, of the post-harvest procedures of this specie. Thus, the objective of this work was to study the drying kinetics, the physical and hygroscopical properties of Coffea canephora fruits, and also to characterize the roasting procedure of the processed product. C. canephora fruits manually harvested at a commercial plantation at the Nova Santa Helena city (MT, Brazil) were used, while the processed product was acquired at Cooperativa dos Cafeicultores da Região de Lajinha (Cocafé), Lajinha (MG, Brazil). Hygroscopic and thermodynamic properties were obtained during water desorption and adsorption on coffee fruits in different psychometric air conditions. Kinetics and thermodynamic properties of the drying process at different air temperatures were acquired. Also, the main physical properties of fruits throughout the drying process (repose angle, bulk and real density, porosity, one thousand mass, sphericity, circularity, volume, area, equivalent diameter, characteristic dimensions, surface-volume relationship, real and bulk volumetric shrinkage) were attained. It was also evaluated, for the roasting process, which relationship among time and roasting temperature that resulted a better cup quality, in addition with the analysis of some physical characteristics of the grain (bulk volumetric expansion index, bulk density, moisture content and color) during roasting. The results allowed the following conclusions: a) as most of hygroscopic products, equilibrium moisture content of C. canephora fruits was directly proportional to the relative humidity and decreases with temperature increase at a constant value of relative humidity, being that the Sigma-Copace model the one that best fitted the experimental data. A reduction of moisture content lead to an increase of energy (isosteric heat of desorption) required to remove water from the product and increased the amount of energy release (isosteric heat of adsorption) by water adsorption of the product. Furthermore, to a constant value of moisture content, integral isosteric heat of desorption were higher than the values of adsorption. This trend is similar to the behavior presented by differential entropy; b) Physical properties studied were influenced by moisture content, being that, with the exception of surface-volume relationship, entire properties reduced their values throughout drying. A three degree polynomial equation was the one that best described bulk and real volumetric shrinkage of C. canephora fruits. c) Page and Midilli models best represented drying curves of C. canephora fruits. Effective diffusion coefficient increased with increment of drying air temperature, presenting values between 2.282 × 10 -11 and 4.316 × 10 -11 m 2 s -1 , to the temperature range of 40 to 60 oC. Activation energy for diffusion process was 38.016 kJ mol -1 and thermodynamic properties (enthalpy, entropy and Gibbs free energy of activation) increased with drying air temperature increment. d) Grain mass temperature, roasting temperature, grain weight loss and time presented a linear dependence among each other and with roasting degree. C. canephora grain received higher points by cup test when they were roasted on the temperatures of 247, 274 and 296 oC until average light roast degree and for average roast degree this trend occurred at the temperature of 247 oC. Generally, coffee lost quality when it was roasted at higher temperature value (308 oC) and with the increment of roast degree. Moisture content reduced continuously until average light roast degree, and, in general, there was a bulk density and color coordinates (L * , a * and b * ) reduction, in addition with increase of grain volume, mostly at the end of roasting procedure at all roast temperatures analyzed. With the exception of bulk density, there was no correspondence between remaining physical properties and cup test evaluation.