O objetivo deste trabalho foi avaliar as alterações nas propriedades físicas e de fluxo de café decorrentes do efeito da torrefação, da moagem, do tipo de material em contato com o produto e do armazenamento em duas temperaturas (10 e 30 oC) durante 180 dias. Foram utilizados grãos de café cru (Coffea canephora e Coffea arabica), descascados e secos, com teor de água médio inicial de 12,61 % (b.s.), adquiridos de comércio regional da Zona da Mata de Minas Gerais. Os grãos foram torrados em dois níveis: média clara (MC) e moderadamente escura (ME), utilizando um torrefador de queima direta de gás GLP, com cilindro em movimento rotativo a 45 rpm. Após o processo de torrefação, os grãos foram processados em moinho Mahlkönig, em três granulometrias diferentes: fina (0,59 mm), média (0,84 mm) e grossa (1,19 mm), além de mantido o lote de café inteiro. As amostras preparadas foram então armazenadas em sacos de polipropileno e mantidas em câmaras tipo B.O.D. em duas temperaturas de armazenamento (10 e 30 oC). Essas foram analisadas durante seis meses, em cinco tempos distintos (0, 30, 60, 120 e 180 dias) quanto às diferentes propriedades físicas e de fluxo: teor de água, atividade de água, ângulo de repouso, massa específica unitária e aparente, porosidade, cor, ângulo de atrito interno e ângulo de atrito efetivo, ângulo de atrito com a parede, coeficientes de atrito interno e externo, função fluxo e coeficiente K. Ademais, o método de análise granulométrica a laser foi avaliado, bem como a modelagem matemática e a obtenção das propriedades termodinâmicas do processo de adsorção de umidade pelo café foram realizadas. De acordo com os resultados obtidos, concluiu-se que: (a) a técnica de granulometria a laser não é adequada para a análise granulométrica de café torrado e moído; (b) a granulometria não afetou significativamente o teor de água de café, independentemente da espécie e nível de torrefação; (c) o nível de torrefação apresentou relação indireta significativa com o teor de água de café, em que quanto maior o grau de torra, menores são os valores desta propriedade física. O teor de água variou entre 1,47 e 4,30 % (b.s.); (d) os valores de ângulo de repouso de café torrado, inteiro e moído, variaram entre 20,5 e 47,2o, bem como decrescem com o aumento da granulometria e com um menor nível de torrefação; (e) as propriedades massa específica unitária, massa específica aparente e porosidade têm comportamento direto com o incremento do grau de moagem de café, menor nível de torrefação e menor tempo de armazenamento. Os valores encontrados estão na faixa de 662,76 a 1232,40 kg m -3 ; 296,30 a 410,31 kg m -3 ; 46,3 a 74,9 %, respectivamente para a massa específica unitária, a massa específica aparente e a porosidade; (f) a partir dos 120 dias de armazenamento, ocorreu perda de coloração do café, visualizada pelas coordenadas L*, a* e b*, bem como pelos índices colorimétricos ângulo hue e croma; (g) a atividade de água de café torrado, independentemente da espécie avaliada, do nível de torrefação e da granulometria, incrementou ao longo do armazenamento. Esta propriedade oscilou entre 0,1493 e 0,4577; (h) o modelo de Sigma-Copace foi o que melhor representou o equilíbrio higroscópico para a sorção do café torrado; (i) com a redução do teor de água, ocorre aumento da entalpia e entropia diferencial de sorção, bem como da energia livre de Gibbs. Estes parâmetros se encontram entre 2178,07 e 3004,38 kJ kg -1 ; -0,93 e 1,63 kJ kg -1 K -1 ; 96,20 e 300,25 kJ kg -1 , respectivamente para entalpia e entropia diferencial de sorção e energia livre de Gibbs; (j) a teoria da compensação entalpia-entropia pode ser satisfatoriamente aplicada ao fenômeno de sorção, sendo controlado pela entropia; (k) o ângulo de atrito interno e ângulo de atrito efetivo variaram significativamente devido à granulometria e ao nível de torrefação, não apresentando comportamento definido ao longo do armazenamento; (l) o nível de torrefação e a granulometria influenciaram diretamente no ângulo de atrito com a parede, em que torras mais intensas e com menor granulometria levam a maiores valores desta propriedade. Seus valores se encontram na faixa de 8,1 a 23,0o; 18,3 e 30o; 15,0 e 29,1o; 11,2 e 27,8o; respectivamente para o café inteiro, moído fino, médio e grosso; (n) a madeira foi o material de parede que possibilitou maiores valores de ângulo de atrito com a parede, seguida do concreto e do aço; (o) as amostras de café inteiras foram caracterizadas como de fluxo livre, sendo que quanto maior o grau de moagem, mais o produto se aproxima de fluxo de produto coesivo; e (p) as amostras de café torradas média clara, inteiras e armazenadas a 30 oC foram as que necessitam de estruturas de armazenagem que suportem maiores pressões, relatadas pelos valores do coeficiente K.
The aim of this work was to evaluate alterations on the physical and flow properties of coffee due to the effect of roast, grind, material type in contact with the product and storage in two temperatures (10 and 30 oC) during 180 days. Crude grain coffee (Coffea canephora and Coffea arabica) with average initial moisture content of 12.61 %, acquired at commerce from Zona da Mata region of Minas Gerais state, was used. Grain was roasted at two levels: medium light (MC) and medium-dark brown (ME), using a roaster of direct burning from GLP gas, with a rotating roaster cylinder at 45 rpm. Afterwards, grain was processes at a Mahlkönig milling, in three diferente particle sizes: thin (0.59 mm), medium (0.84 mm) and thick (1.19 mm), besides the whole coffee lot. Samples prepared were then stored at polypropylene bags and kept at B.O.D. type chambers in two storage temperatures (10 and 30 oC). These were analyzed during six months, at five distinct times (0, 30, 60, 120 and 180 days) regarding its different physical and flow properties: moisture content, water activity, repose angle, real and bulk densities, porosity, color, angle of internal friction and effective angle of friction, angle of friction with wall material, internal and external friction coefficients, flow function and K coefficient. Furthermore, particle size by laser method was evaluated, with addition of mathematical modeling and thermodynamic properties acquisition of the coffee moisture adsorption process were accomplished. According to the obtained results, it was concluded that: (a) particle size by laser technique is not suitable for analysis of particle size of roasted and grounded coffee; (b) particle size did not significantly affected moisture content of coffee, independently of specie and roast level; (c) roast level presented significantly indirect relationship with moisture content of coffee, in which as higher roasting degree, lower are the values of this physical property. Moisture content varied between 1.47 and 4.30 % (d.b.); (d) values of repose angle of roasted coffee, whole and grinded, varied between 20.5 and 47.2o, decreasing with particle size increase and at a lower level of roast process; (e) real and bulk densities and porosity have direct behavior along with grinding level increment, lower roasting degree and lower storage period. Values encountered are at the range of 662.76 to 1232.40 kg m -3 , 296.30 to 410.31 kg m -3 , 46.3 to 74.9 %, respectively to real density, bulk density and porosity; (f) from 120 days of storage, a loss of coffee color occurred, stated by L*, a* and b* coordinates, also by the colorimetric index hue angle and chroma; (g) water activity of roasted coffee, independently of species evaluated, roasting degree and particle size, increased throughout storage. This property oscilated between 0.1493 and 0.4577; (h) Sigma-Copace model best represented hygroscopic equilibrium for sorption of roasted coffee; (i) with moisture content reduction, an increase of differential enthalpy and entropy of sorption and Gibbs free energy occurs. These parameters are found between 2178.07 and 3004.38 kJ kg -1 , -0.93 and 1.63 kJ kg - 1 K -1 , 96.20 and 300.25 kJ kg -1 , respectively for differential enthalpy and entropy of sorption and Gibbs free energy; (j) enthalpy-entropy compensation theory can be applied satisfactory to the sorption phenomena, being entropy controlled; (k) angle of internal friction and effective angle of friction varied significantly due to particle size and roasting degree, not presenting a defined behavior throughout storage; (l) roasting and particle size degree influenced directly at angle of friction with wall material, in which intense roasting and lower particle size lead to higher values of this property. Its values are found within the range of 8.1 to 23.0o, 18.3 to 30o, 15.0 to 29.1o, 11.2 to 27.8o, respectively for whole coffee, thin, medium and thick grinding; (n) wood was the wall material that permitted higher values of angle of friction with wall, followed by concrete and steel; (o) whole coffee samples were characterized as free flow, being that at higher grinding, the product approaches cohesive flow; and (p) coffee samples roasted at medium light degree, stored at 30 oC are the ones that requires storage structures that supports higher pressures, reported by the K coefficient values.