O objetivo deste trabalho foi desenvolver uma árvore de decisão para analisar epidemias da ferrugem do cafeeiro. O conhecimento dos fatores que condicionam as epidemias de ferrugem é importante e pode servir de base para a decisão sobre as medidas de controle a adotar e o melhor momento de implementá-las. Taxas de infecção calculadas a partir de avaliações mensais de incidência da doença foram agrupadas em três classes: declínio ou estagnação - TX1; crescimento até 5 pontos percentuais - TX2; e crescimento acima de 5 pontos percentuais - TX3. Dados meteorológicos, carga pendente de frutos e espaçamento entre plantas foram usados como variáveis explicativas das classes de taxa de infecção. A árvore de decisão foi induzida de 364 exemplos preparados a partir de dados coletados em lavouras de café em produção, de outubro de 1998 a outubro de 2006. O modelo classificou corretamente 78% dos exemplos de treinamento e a sua acurácia foi estimada em 73% para a classificação de novos exemplos. O acerto para cada classe de taxa de infecção foi 88% (TX1), 57% (TX2) e 79% (TX3). As variáveis explicativas mais importantes foram a temperatura média nos períodos de molhamento foliar, a carga pendente de frutos, a média das temperaturas máximas diárias no período de incubação e a umidade relativa do ar. A árvore de decisão demonstrou seu potencial como modelo de representação simbólica e interpretável, auxiliando na compreensão de quais variáveis e como as interações dessas variáveis conduziram as epidemias da ferrugem do cafeeiro no campo.
The objective of this work was to develop a decision tree to analyze coffee rust epidemics. Knowledge about the factors that influence rust epidemics is important and can serve as basis for the decision about the control measures to adopt and the best moment to implement them. Infection rates calculated from monthly assessments of the disease incidence were grouped into three classes: decline or stagnation - TX1; growth up to 5 percentage points - TX2; and growth above 5 percentage points - TX3. Meteorological data, fruit load and space between plants were used as explanatory variables for the infection rate classes. The decision tree was induced from 364 examples prepared from data collected on coffee growing areas between October 1998 and October 2006. The model correctly classified 78% of the training data set and its accuracy was estimated in 73% for the classification of new examples. The success for each infection rate class was 88% (TX1), 57% (TX2) e 79% (TX3). The most important explanatory variables were mean temperature during leaf wetness periods, fruit load, mean of maximum temperatures during the incubation period and air relative humidity. The decision tree demonstrated its potential as a symbolic and interpretable model representation, helping to understand which variables and how the interactions between these variables conducted the coffee rust epidemics in the field.