MACRO E MICRONUTRIENTES RELACIONADOS À TOLERÂNCIA À SECA EM CAFEEIROS

WG dos Santos; E Andreazi; FC Carducci; IC de B Fonseca; MM Holderbaum, D Chamlet; ALB Martins; T Sera; GH Sera. IAPAR, Área de Melhoramento e Genética Vegetal. UEL, departamento de agronomia. email: gustavosera@iapar.br. Apoio: Consórcio Pesquisa Café.

O estresse por déficit hídrico prejudica todas as fases de crescimento e desenvolvimento do cafeeiro, no entanto, a quantificação dos danos é difícil de ser mensurada devido à complexa rede de mecanismos e interações que atuam na resposta ao estresse hídrico. O objetivo deste estudo foi identificar tolerância à seca em linhagens de café arábica portadoras de genes de *Coffea racemosa*, por meio de parâmetros nutricionais.

O experimento foi conduzido em casa de vegetação com monitoramento contínuo da temperatura, localizada na sede do Instituto Agronômico do Paraná (IAPAR) em Londrina/PR. Mudas entre quatro a seis pares de folhas foram submetidas ao estresse hídrico. Foram testados três genótipos de *C. arabica* portadores de genes de *C. racemosa* e as cultivares Tupi IAC 1669-33 e IAPAR 59 como controles sensível e tolerante à seca, respectivamente (**Tabela 1**).

A massa seca de todas as plantas foi enviada para o laboratório de solos do IAPAR, para dosagem de macro e micronutrientes conforme Carmo et al. (2000). O teor de cada nutriente foi dosado com base no peso seco total de cada planta individualmente. Com os dados obtidos foi calculada a variação relativa nutricional de cada nutriente (VR), dado em porcentagem através da equação: VR = SI/CIx100, onde CI e SI correspondem ao teor do nutriente no ambiente controle e sem irrigação, respectivamente.

Os dados foram transformados para efetuar a análise de variância e teste de médias Tukey a 5%, por meio do programa R versão 3.3.0 (R Core Team, 2016), pacote agricolae (Mendiburu, 2015).

Resultados e conclusões

O teor de nitrogênio (N) não variou entre os ambientes em nenhum dos genótipos, com exceção de IAPAR 59 que teve conteúdo maior de N no ambiente sem irrigação (**Tabela 2**). O teor de potássio (K) foi maior no ambiente sem irrigação somente para os genótipos com genes de *C. racemosa*, sendo que em Tupi e em IAPAR 59 os teores de K nesse ambiente, respectivamente, diminuíram ou não alteraram. O teor de cálcio (Ca) de H0113-40-26-9 aumentou no ambiente com estresse, em relação ao controle, enquanto que em H0113-40-26-1 e H0113-40-26-10 os teores não alteraram e para Tupi e IAPAR 59 ocorreu reducão de Ca no ambiente com estresse.

Tabela 1 - Descrição de genótipos de café utilizados para teste de tolerância à seca.

Genótipos	Descrição ⁽¹⁾
IAPAR H0113-40-26-1	IPR 104 x [Tupi x (IAPAR 81185 x Tupi)]
IAPAR H0113-40-26-9	IPR 104 x [Tupi x (IAPAR 81185 x Tupi)]
IAPAR H0113-40-26-10	IPR 104 x [Tupi x (IAPAR 81185 x Tupi)]
Tupi IAC 1669-33	Villa Sarchi x Híbrido de Timor
IAPAR 59	Villa Sarchi x Híbrido de Timor

⁽¹⁾ Villa Sarchi = Villa Sarchi CIFC 971/10; Híbrido de Timor = Híbrido de Timor CIFC 832/2; Tupi = Tupi IAC 1669-33; IAPAR 81185 = planta F₂ do genótipo F₁RC₂ C1195-5-6-2 c.950 Ep209, originada do cruzamento [(Coffeaarabica x C. racemosa C1195) x C. arabica] x C. arabica.

Tabela 2 - Teor de macronutrientes em plântulas com aproximadamente 6 pares de folhas completas, de três genótipos de *Coffeaarabica* com introgressão de genes de *C. racemosa* e duas cultivares (Tupi IAC 1669-33 e IAPAR 59, sensível e tolerante à seca, respectivamente), submetidas a dois ambientes: controle irrigado (CI) e sem irrigação (SI) e dois períodos de restrição de irrigação conduzidas em casa de vegetação.

	Nitrogêni	Nitrogênio (g.kg ⁻¹) ⁽¹⁾		Fósforo (g.kg ⁻¹)		Potássio (g.kg ⁻¹)		Cálcio (g.kg ⁻¹)		Magnésio (g.kg ⁻¹)	
Genótipos	CI	SI	CI	SI	CI	SI	CI	SI	CI	SI	
H0113-40-26-1	20.22 a A	20.02 ab A	2.70 c B	3.78 ab A	13.60 b B	17.03 a A	12.55 b A	13.99 a A	5.26 b B	6.13 a A	
H0113-40-26-9	20.45 a A	20.42 ab A	2.03 d B	3.08 c A	10.43 c B	14.91 b A	9.18 c B	12.59 a A	3.95 c B	5.46 a A	
H0113-40-26-10	21.50 a A	22.08 ab A	2.60 cd B	3.24 bc A	13.81 b B	17.17 a A	11.96 b A	13.40 a A	5.07 b B	5.81 a A	
Tupi IAC 1669-33	21.54 a A	18.06 b A	3.86 a A	3.29 bc B	19.45 a A	14.69 b B	15.60 a A	13.20 a B	7.36 a A	6.04 a B	
IAPAR 59	17.91 a B	25.41 a A	3.28 b B	3.89 a A	17.68 a A	19.10 a A	16.07 a A	12.66 a B	7.52 a A	5.52 a B	
Média	20.32	21.2	2.90	3.46	14.99	16.58	13.07	13.17	5.83	5.79	

⁽¹⁾Dados transformados para log(x). Médias seguidas pelas mesmas letras minúsculas na coluna e maiúsculas na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade e teste F a 5% de probabilidade, respectivamente.

Tabela 3 - Teor de micronutrientes em plântulas com aproximadamente 6 pares de folhas completas, de três genótipos de *Coffeaarabica* com introgressão de genes de *C. racemosa* e duas cultivares (Tupi IAC 1669-33 e IAPAR 59, sensível e tolerante à seca, respectivamente), submetidas a dois ambientes: controle irrigado (CI) e sem irrigação (SI) e dois períodos de restrição de irrigação conduzidas em casa de vegetação.

	Cobre (1	mg.kg ⁻¹) ⁽²⁾	Zinco (1	mg.kg ⁻¹)	Boro (mg.kg ⁻¹)		
Genótipos	CI	SI	CI	SI	CI	SI	
H0113-40-26-1	2.65 a A	3.31 a A	10.87 b B	14.83 a A	60.33 b A	68.80 a A	
H0113-40-26-9	2.03 a A	2.48 ab A	8.89 b B	10.53 b A	53.70 b B	68.38 a A	
H0113-40-26-10	2.37 a A	3.35 a A	10.46 b A	11.61 b A	60.34 b A	70.33 a A	
Tupi IAC 1669-33	2.45 a A	2.59 ab A	13.84 a A	10.81 b B	81.73 a A	67.41 a B	
IAPAR 59	3.06 a A	2.00 b B	14.46 a A	11.41 b B	84.86 a A	58.65 a B	
Média	2.51	2.75	11.7	11.84	68.19	66.71	

⁽²⁾Dados transformados para 1/(x+1). Médias seguidas pelas mesmas letras minúsculas na coluna e maiúsculas na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade e teste F a 5% de probabilidade, respectivamente.

O teor de magnésio (Mg) teve comportamento similar ao de Ca, pois os teores foram maiores no ambiente sem irrigação em H0113-40-26-1, H0113-40-26-9 e H0113-40-26-10 e menores em Tupi e IAPAR 59. Para o teor de cobre (Cu) foi verificada diferença significativa entre os ambientes apenas na cultivar IAPAR 59, que teve menor concentração no ambiente estressado. No ambiente sem irrigação, H0113-40-26-10 e H0113-40-26-1 apresentaram maiores teores de Cu que IAPAR 59, enquanto que H0113-40-26-9 e Tupi não diferiram dos demais.

Os teores de zinco (Zn) de H0113-40-26-1 e H0113-40-26-9 foram maiores no ambiente sem irrigação, enquanto que em H0113-40-26-10 o teor não alterou, para Tupi e IAPAR 59 ocorreu redução de Zn no ambiente com estresse (**Tabela 3**). Entre os genótipos, no ambiente controle, maior teor de Zn foi verificado para Tupi e IAPAR 59, em relação aos demais genótipos.

No geral, considerando as variáveis VRCa, VRMg, VRCu, VRZn e VRB, os genótipos com genes de *C. racemosa* mostraram acúmulo maior desses nutrientes no ambiente estressado e foram os únicos que diferiram de IAPAR 59, que apresentou o menor teor (**Tabela 4**). Foi verificado que, em condições de déficit hídrico, os cafeeiros com introgressão de genes de *C. racemosa* tiveram os teores de macronutrientes iguais ou superiores aos verificados no experimento controle, assim como o padrão tolerante IAPAR 59, o que não ocorreu com Tupi, indicando que esses elementos são importantes para lidar com o estresse por seca.

Os micronutrientes mostraram importante papel na tolerância à seca em cafeeiros com introgressão de genes de *C. racemosa*. No entanto, a tolerância à seca de IAPAR 59, não parece estar relacionada com o maior teor de micronutrientes.

Os genótipos com introgressão de genes de *C. racemosa* são mais tolerantes à seca que a cultivar Tupi. **Tabela 4** – Variação relativa nutricional (VR) em plântulas com aproximadamente 6 pares de folhas completas, de três genótipos de *Coffeaarabica* com introgressão de genes de *C. racemosa* e duas cultivares (Tupi IAC 1669-33 e IAPAR 59, sensível e tolerante à seca, respectivamente),

							. · · · · · · · · · · · · · · · · · · ·	,,	
submetidas a dois ambientes: controle irrigado (CI) e sem irrigação (SI) e dois períodos de restrição de irrigação conduzidas em casa de vegetação.									
Genótipos	$VRN^{(1)}$	$VRP^{(2)}$	$VRK^{(2)}$	VRCa ⁽²⁾	$VRMg^{(2)}$	VRCu ⁽³⁾	VRZn ⁽³⁾	$VRB^{(2)}$	
H0113-40-26-1	101.7 ab	151.1 a	130.9 a	120.0 ab	127.7 ab	146.8 a	143.6 a	118.8 a	
H0113-40-26-9	102.0 ab	182.5 a	156.7 a	166.9 a	182.7 a	147.2 a	148.0 a	147.9 a	
H0113-40-26-10	108.1 ab	171.1 a	158.9 a	127.9 ab	135.8 ab	147.8 a	121.4 ab	128.6 a	
Tupi IAC 1669-33	87.7 b	86.4 b	76.3 b	84.9 bc	83.2 bc	107.0 ab	79.2 b	86.2 ab	
IAPAR 59	141.4 a	119.6 ab	109.0 a	79.3 c	74.4 c	72.4 b	84.1 b	68.4 b	
Pr>Fc	0.006	0.015	0.000	0.000	0.000	0.004	0.001	0.000	
CV %	12.87	37.64	28.33	26.76	29.24	10.23	7.26	29.07	

VRN = variação relativa do teor de nitrogênio; VRP = variação relativa do teor de fósforo; VRK = variação relativa do teor de potássio; VRCa = variação relativa do teor de Cálcio; VRMg = variação relativa do teor de magnésio; VRCu = variação relativa do teor de cobre; VRZn = variação relativa do teor de zinco; VRB = variação relativa do teor de boro. (1)Dados transformados para Raiz(x); (2)Dados transformados para 1/x; (3)Dados transformados para Log(x). Médias seguidas pela mesma letra na coluna não diferem entre si pelo teste de tukey a 5% de probabilidade. VR = SI/CI*100. Dados apresentados em porcentagem.