FONTES DE NITROGÊNIO SOLÚVEIS, PROTEGIDAS E DE LENTA LIBERAÇÃO NA PRODUÇÃO DO CAFEEIRO IRRIGADO – 1º BIÊNIO – ARAGUARI - MG

SANTINATO, R. Engenheiro Agrônomo, Pesquisador e Consultor Santinato & Santinato Cafés Ltda., Campinas, SP.; SILVA, R.O. Gerente Campo Experimental Izidoro Bronzi (ACA), Araguari, MG.; SANTINATO, F. Engenheiro Agrônomo, Msc. Doutorando Agronomia UNESP Jaboticabal, SP.; CORSINI, P.R. Acadêmica em Agronomia UNESP Jaboticabal, SP.; SILVA, C.D. Acadêmico em Agronomia, UFV Rio Paranaíba, MG.

A adubação nitrogenada objetiva atender a demanda de N, nutriente mais exigido quantitativamente para a vegetação e produção do cafeeiro. Quando se aplica o N no solo pode ocorrer perdas por lixiviação e por volatilização, as quais dependem do tipo de solo, condução da lavoura, tipo de irrigação e notadamente pelas condições climáticas adversas ou mesmo o excesso de chuvas ou da própria irrigação. No mercado atual de fontes de N, além das fontes solúveis tradicionais (ureia, sulfato de amônio e nitrato de amônio), têm-se as fontes protegidas (Nitro Mais, Nitro Gold, Ureia Protegida, Sulfammo Meta, Super N e Duramax), e as de lenta/programada liberação (Ciclus, Polyblen e IBRA – N).

O experimento foi realizado no Campo Experimental Izidoro Bronzi-ACA-Araguarí em solo LVA-argiloso, em lavoura de 11 anos, decotada, irrigada via gotejamento, com espaçamento de 3,7 m x 0,7 m, com a cultivar Catuaí Vermelho IAC 51, com carga pendente baixa. No ano de instalação do experimento, 2013, a lavoura foi submetida à um decote limitando a altura das plantas em 2,5 m. Foram estudadas 13 fontes de N, além de uma testemunha, totalizando 14 tratamentos. As fontes utilizadas foram: Ureia (45% de N), Sulfato de Amônio (21% de N e 24% de S), Nitrato de Amônio (27% de N), IBRA-N (45% de N), Ciclus (30% de N), Polyblen (39% de N), Nitro Mais (44,6% de N), Nitro Gold (37% de N), Ureia protegida (44% de N), Sulfammo Meta 29 (29% de N), Super N (45% de N) e Duramax (45% de N). O delineamento experimental foi de blocos ao acaso com quatro repetições em parcelas de 30 plantas sendo as seis centrais úteis para as avaliações. As doses e aplicações foram realizadas de acordo com os fabricantes, assim para as fontes tradicionais e fontes protegidas utilizou-se de quatro parcelamentos iguais (Out, Dez, Fev e Mar) na dose de 350 kg de N ha⁻¹ (87,5 kg de N por vez), exceto a ureia protegida com 280 kg N ha⁻¹ (65 kg N vez), devido à recomendação da empresa que viabiliza dose 20% inferior ao recomendado. Para as fontes de lenta liberação utilizou-se uma única aplicação em outubro de 245 kg de N (pois os fabricantes indicam a viabilidade de 30% de redução da dose), exceto o IBRA-N com 350 kg N ha⁻¹. Todos os demais tratos nutricionais e fitossanitários seguiram as recomendações do MAPA/Procafé para a região.

Avaliou-se os teores foliares de macro e micronutrientes de 60 em 60 dias, teores no solo de macro e micronutrientes, V%, pH, H + Al, CTC, produtividade, renda, peneiras de 13 a 18 e biometria (comprimento do internódio, número de nós, enfolhamento (%), nas safras de 2014 e 2015. Os dados foram submetidos à análise de variância, e quando procedente ao teste de Tukey, ambos à 5% de probabilidade.

Resultados e conclusões:

A adubação nitrogenada promoveu acréscimo de 77 a 178% na produtividade em relação à testemunha. Entre os tratamentos adubados, as fontes de N mais eficientes foram o Sulfammo Meta (+178%) e a combinação de ureia mais sulfato de amônio (padrão Procafé) (+168%). Em segundo plano, com acréscimos produtivos de 126 a 148% ficaram as demais fontes. O menor acréscimo foi obtido pelo Nitro Mais (+77%) (Tabela 1).

Tabela 1. Produtividade do cafeeiro nas safras de 2014, 2015 e média do biênio, em função dos tratamentos estudados.

T	Produtividad	Do/			
Tratamentos	2014	2015	Média	R%	
T1 – Testemunha	12,7 c	16,4 d	14,6 с	100	
T2 – Ureia	25,7 ab	46,9 ab	36,3 ab	+ 148	
T3 – Sulfato de Amônio	16,5 bc	49,5 ab	33,0 ab	+ 126	
T4 – Nitrato de Amônio	21,7 abc	44,4 abc	33,0 ab	+ 126	
T5 – Ureia + Sulfato de Amônio	25,2 ab	53,1 a	39,2 a	+ 168	
T6 – Nitro Mais	19,6 abc	32,2 c	25,9 b	+ 77	
T7 – Nitro Gold	24,5 ab	41,2 abc	32,8 ab	+ 124	
T8 – Sulfammo Meta	29,8 a	51,6 ab	40,7 a	+ 178	
T9 – Super N	23,8 abc	46,6 ab	35,2 ab	+ 141	
T10 – Duramax	22,2 abc	48,5 ab	35,4 ab	+ 142	
T11 – Ureia protegida	26,8 ab	40,1 ab	33,5 ab	+ 129	
T12 – Polyblen	19,9 abc	50,2 ab	35,0 ab	+139	
T13 – Ciclus	22,5 abc	47,3 ab	34,9 ab	+ 139	
T14 – IBRA - N	24,8 ab	47,9 ab	36,3 ab	+ 148	
CV (%)	20,16	11,65	18,35	-	

*Médias seguidas das mesmas letras nas colunas não diferem de si pelo teste de Tukey à 5% de probabilidade.

**As doses dos tratamentos 11, 12 e 13 foram 20, 30 e 30% inferiores aos demais tratamentos, conforme indicação dos fabricantes.

A análise foliar revelou teor de N adequado quando utilizou-se todas as fontes de nitrogenadas (30,0 a 35,0 g kg $^{-1}$). No solo observou-se que as fontes de N acidificaram o solo de forma significativa, com destaque para o sulfato de amônio (pH = 3,92 e V = 16,5%), seguido da ureia (pH = 4,25 e V = 23,75%) e praticamente sem acidificação para o Sulfammo Meta (pH = 4,65 e V = 41,82%). As demais fontes adicidicaram com maiores ou menores itensidades variando o V de 29,25 à 39,7%. Todos os tratamentos acidificaram mais que a testemunha (onde não se aplicou nitrogênio), exceto o Sulfammo Meta que obteve valor semelhante.

Quanto aos macronutrientes destaca-se o enxofre nos tratamentos sulfato de amônio, ureia mais sulfato de amônio, Sulfammo Meta e ureia protegida. Os maiores teores de Ca, B foram obtidos pelo Sulfammo Meta. O maior teor de Cu foi obtido pela ureia mais sulfato de amônio. O maior teor de zinco foi obtido com o nitrato de amônio. Não houve diferença entre os tratamentos para o Mn.

Tabela 2. Teor foliar de N e parâmetros de fertilidade do solo em função dos tratamentos estudados.

Tratamentos	N foliar	pН	V%	Ca	Mg	S	В	Cu	Mn	Zn
	g kg	Cacl2		mmolc dm ⁻³	Resina	mg dm ⁻³				
T1 – Testemunha	25,1	4,7	44,7	22,5	15,75	17,25	0,72	4,67	1,32	5,08
T2 – Ureia	31,8	4,35	23,75	17,25	11,0	52,0	0,63	4,33	1,67	4,58
T3 – Sulfato de Amônio	34,75	3,92	16,5	10,5	4,5	166,8	0,69	3,55	1,02	2,8
T4 – Nitrato de Amônio	30,92	4,35	36,25	17,25	11,0	52	0,63	4,33	1,57	4,58
T5 – Ureia + Sulfato de	33,47	4,3	31,6	18,0	7,67	117,7	0,61	4,53	1,67	5,3
Amônio										
T6 – Nitro Mais	31,12	4,4	35,0	18,25	11,75	27,8	0,78	4,5	1,25	4,13
T7 – Nitro Gold	32,76	4,42	36,25	20,0	9,75	54,5	0,63	9,53	1,32	3,85
T8 – Sulfammo Meta	32,81	4,65	41,82	28,5	9,5	152,3	0,83	6,83	0,75	2,9
T9 – Super N	34,06	4,38	33,51	20,0	9,25	27,8	0,6	5,25	2,25	4,75
T10 – Duramax	31,06	4,20	29,25	15,75	8,0	22,3	0,76	4,45	1,18	3,35
T11 – Ureia protegida	30,75	4,33	31,5	17,25	8,25	82,5	0,59	10,5	0,93	3,88
T12 – Polyblen	33,21	4,30	37,5	20,5	11,75	41,8	0,71	6,42	1,98	3,15
T13 – Ciclus	32,18	4,47	39,7	21,0	11,75	22,5	0,76	4,45	1,18	3,35
T14 – IBRA - N	34,10	4,22	30,4	14,80	8,2	44,4	0,57	3,9	0,98	2,8

Pode-se concluir no primeiro biênio estudado: 1 – A ausência do nitrogênio na adubação do cafeeiro reduz em até 178% a produtividade do cafeeiro, de 40,7 para 14,65 sacas de café ben. ha⁻¹. 2 – As fontes mais eficientes em elevar a produtividade foram a associação da ureia com o sulfato de amônio e o Sulfammo Meta, com produtividades 168 e 178% superiores à testemunha, respectivamente. As demais fontes elevaram de 77 à 148% a produtividade. 3 – As fontes de nitrogênio que menos acidificam o solo foram o Sulfammo Meta (praticamente sem acidificação), Ciclus, Polyblen, nitrato de amônio e Nitro Gold. 4 – As fontes que mais acidificam o solo foram sulfato de amônio, ureia e Duramax. 5 – O ensaio continuará por mais um biênio.