SELETIVIDADE FISIOLÓGICA DE ACARICIDAS UTILIZADOS EM CAFEEIRO PARA OVOS E FASES SUBSEQUENTES DO DESENVOLVIMENTO DE Chrysoperla externa (HAGEN, 1861)

Michelle Vilela², Geraldo Andrade Carvalho³, César Freire Carvalho³, Matheus Alvarenga Vilas Boas⁴

RESUMO: Por meio de bioensaios realizados em laboratório, foi avaliada a seletividade fisiológica dos acaricidas espirodiclofeno (Envidor – 0,12 g i.a.L⁻¹), fenpropatrina (Meothrin 300 – 0,15 e 0,30 g i.a.L⁻¹), enxofre (Thiovit Sandoz – 4,0 e 8,0 g i.a.L⁻¹) e abamectina (Vertimec 18 EC – 0,0067 e 0,0225 g i.a.L⁻¹), utilizados em cafeeiros, para ovos de *Chrysoperla externa* (Hagen, 1861). Após a pulverização dos produtos em ovos sob torre de Potter, foram colocados em tubos de vidro e mantidos em câmara climática a 25±2°C, UR de 70±10% e fotofase de 12 horas. Os compostos foram enquadrados em classes de toxicidade de acordo com o efeito total (E), seguindo recomendações da IOBC. Fenpropatrina (0,3 g i.a.L⁻¹) foi nocivo e fenpropatrina (0,15 g i.a.L⁻¹) moderadamente nocivo ao crisopídeo. Os produtos espirodiclofeno, enxofre e abamectina foram moderadamente nocivos ao predador.

Palavras-chave: Coffea arabica, manejo integrado de pragas, agrotóxicos, impacto, crisopídeo

PHYSIOLOGIC SELECTIVITY OF ACARICIDES USED IN COFFEE CROPS FOR EGGS OF Chrysoperla externa (HAGEN, 1861) AND THEIR EFFECTS ON THE SUBSEQUENT STAGES

ABSTRACT: Through bioassays performed in the laboratory was evaluated the physiologic selectivity of acaricides spirodiclofen (Envidor – 0.12 g a.i.L⁻¹), fenpropathrin (Meothrin 300 – 0.15 and 0.30 g a.i.L⁻¹), sulphur (Thiovit Sandoz – 4.0 and 8.0 g a.i.L⁻¹), abamectin (Vertimec 18 CE – 0.0067 and 0.0225 g a.i.L⁻¹), used in coffee, for eggs of *Chrysoperla externa* (Hagen, 1861). The sprayings were accomplished directly on eggs of *C. externa* by using a Potter's tower. Afterwards, the eggs were placed in glass tubes and kept in climatic chamber at 25±2°C, RH of 70±10% and 12 hour photophase. The pesticides were classified according to IOBC proposed scale. Fenpropathrin (0.30 g a.i.L⁻¹) was harmful and fenpropathrin (0.15 g a.i.L⁻¹) was moderately harmful to the green lacewing. The products spirodiclophen, sulphur and abamectin were moderately harmful to the predator.

Key-words: Coffea arabica, integrated pest management, pesticides, impact, green lacewing

INTRODUÇÃO

Apesar da ação de inimigos naturais no agroecossistema cafeeiro, o controle de ácaros ainda é dependente do uso de acaricidas, devido à economicidade e à rapidez de controle. Entretanto, aplicações de compostos de largo espectro de ação e de forma intensa podem reduzir populações de inimigos naturais, além de contaminar o ambiente (Fragoso et al., 2002; Reis et al., 2002).

Em um programa de manejo integrado de pragas (MIP), a preservação de crisopídeos e de outros inimigos naturais deve ser considerada. Isso dependerá da compatibilidade com os outros métodos de controle, principalmente o químico. Dessa forma, estudos que busquem informações a respeito do impacto de produtos fitossanitários sobre agentes benéficos devem ser desenvolvidos (Carvalho et al., 2003).

Considerando o potencial e importância de *C. externa* como organismo regulador de populações de ácarospraga e a fim de gerar subsídios para o MIP na cultura cafeeira, este trabalho foi realizado com o objetivo de estudar os efeitos dos produtos espirodiclofeno, fenpropatrina, enxofre e abamectina, utilizados no controle de *O. ilicis* e *B. phoenicis*, na cultura cafeeira, sobre ovos e fases subsequentes do desenvolvimento desse predador.

MATERIAL E MÉTODOS

Ovos de terceira geração e com, no máximo, 24 horas de idade, da criação de manutenção de *C. externa*, foram retirados e colocados em grupos de 40, em placas de Petri de 15 cm de diâmetro, para o recebimento dos produtos. As pulverizações dos acaricidas foram realizadas diretamente sobre os ovos, por meio de torre de Potter calibrada para uma

¹Trabalho financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

²Agrônoma, Doutoranda em Agronomia/Entomologia, Departamento de Entomologia da Universidade Federal de Lavras, C.P. 3037, CEP 37200-000, Lavras, MG – Bolsista do CNPq - mimi_vilela@yahoo.com.br

³D.Sc., Professores do Departamento de Entomologia/DEN – UFLA - gacarval@ufla.br / cfc@ufla.br

⁴Graduando em Agronomia, Departamento de Entomologia/DEN – UFLA – Bolsista da FAPEMIG - matheusavboas@yahoo.com.br

aplicação de 1,5±0,5 μL.cm⁻² e pressão de 15 lb.pol⁻². Os acaricidas foram aplicados nas maiores dosagens recomendadas pelos fabricantes para o controle do ácaro-vermelho e do ácaro da mancha-anular do cafeeiro (Tabela 1).

Nome técnico		Dosagem	Grupo	Classe	
	Nome comercial	g i.a./L	químico	toxicológica	
Espirodiclofeno	Envidor	0,12	Cetoenol	III	
Fenpropatrina	Meothrin 300	0,15	Piretroide	I	
Fenpropatrina	Meothrin 300	0,3	Piretroide	I	
Enxofre	Thiovit Sandoz	4,0	Inorgânico	IV	
Enxofre	Thiovit Sandoz	8,0	Inorgânico	IV	
Abamectina	Vertimec 18 EC	0,0067	Avermectina	III	
Abamectina	Vertimec 18 EC	0,0225	Avermectina	III	

TABELA 1 - Nomes técnico e comercial, dosagens, grupos químicos e classes toxicológicas dos compostos avaliados.

Realizada a aplicação dos produtos sobre os ovos, esses foram individualizados em tubos de vidro de 2,5 cm de diâmetro e 8,5 cm de altura, vedados com filme de PVC laminado e, após a eclosão da larva, estas foram alimentadas ad libitum com ovos de Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae).

O delineamento experimental utilizado foi o inteiramente casualizado, com oito tratamentos e oito repetições, sendo cada uma composta por cinco ovos. Avaliaram-se a viabilidade dos ovos, a duração do período embrionário, a duração e a sobrevivência das larvas de primeiro, segundo e terceiro instares e de pupas. Os dados obtidos foram submetidos à análise de variância, sendo as médias dos tratamentos comparadas por meio do teste de agrupamento de Scott e Knott, a 5% de significância (Scott & Knott, 1974).

Para avaliar os efeitos dos compostos sobre adultos provenientes de ovos tratados, os sobreviventes foram agrupados em casais e distribuídos na proporção de um casal por gaiola de PVC de 10 cm de diâmetro x 10 cm de altura, revestidas internamente com papel-filtro, tendo as partes inferiores vedadas com filme laminado e as superiores fechadas com tecido tipo voile. Os adultos foram alimentados com dieta à base de lêvedo de cerveja e mel (1:1 v.v⁻¹), conforme metodologia de Freitas (2001).

Durante quatro semanas consecutivas, efetuou-se a contagem dos ovos depositados em intervalos de três dias. Em cada tratamento, 96 ovos foram coletados aleatoriamente e individualizados em compartimentos de placas de microtitulação fechadas com PVC laminado e mantidas em sala climatizada. Foi utilizado delineamento experimental inteiramente casualizado e cada parcela foi composta por um casal. O número de tratamentos variou em função do nível de mortalidade provocada pelos compostos aplicados nos ovos do predador, tendo o número mínimo de repetições sido de sete. Avaliaram-se a mortalidade de adultos, a capacidade diária e total de oviposição/fêmea e a viabilidade dos ovos.

Foi determinado o efeito total (E) de cada produto por meio da fórmula E = 100% - (100% - M%) x R1 x R2, proposta por Vogt (1992), sendo: E = efeito total (%); M% = mortalidade no tratamento corrigida pela fórmula de Abbott (1925); R1 = razão entre a média diária de ovos colocados por fêmea tratada e não tratada e R2 = razão entre a viabilidade média de ovos colocados por fêmea tratada e não tratada. Após a obtenção do efeito total, cada composto foi enquadrado nas classes de toxicidade propostas pela IOBC (Boller et al., 2005), sendo: classe 1 = inofensivo ou levemente nocivo (E<30%), classe 2 = moderadamente nocivo (3&E≤79%), classe 3 = nocivo (80≤E≤99%) e classe 4 = nocivo (E>99%).

RESULTADOS E DISCUSSÃO

O contato dos acaricidas com ovos de C. externa não resultou em efeito prejudicial à duração do período embrionário, com médias variando de 4,9 a 5,0 dias (Tabela 2). Esses resultados assemelham-se aos obtidos por Carvalho et al. (2002), que realizaram o tratamento de ovos de C. externa com Danimen 300 CE (fenpropatrina 0,09 g i.a.L⁻¹) e com os de Silva (2004), para os produtos Kumulus 800 PM (enxofre 4,0 g i.a.L⁻¹) e Turbo 50 CE (betaciflutrina 0,013 g i.a.L⁻¹). Os acaricidas fenpropatrina (0,3 g i.a.L⁻¹) e abamectina, nas duas dosagens testadas, reduziram a viabilidade dos ovos, com médias de 70,0%; 65,0% e 57,5%, respectivamente (Tabela 2). Esses resultados confirmam aqueles de Carvalho et al. (2002) que aplicaram fenpropatrina (0,09 g i.a.L⁻¹) em ovos de C. externa e encontraram viabilidade de 73,3%.

A duração da fase larval não foi afetada pelos compostos avaliados, com médias variando de 8,7 a 10,9 dias (Tabela 2). Esses resultados corroboram os de Maia et al. (2000), Fonseca et al. (2001) e Silva et al. (2002), que constataram médias de 11,0; 10,9 e 11,7 dias de duração, respectivamente, para larvas alimentadas com Schizaphis graminum (Rondani, 1852) e lagartas de Alabama argillacea (Hübner, 1818). Fenpropatrina (0,3 g i.a.L⁻¹) foi o único composto que reduziu a sobrevivência da fase larval, com média de 86,8% (Tabela 2).

Houve redução para sobrevivência de larvas de primeiro instar no tratamento com fenpropatrina 0,3 g i.a.L⁻¹ (Tabela 3), de forma semelhante aos resultados de Godoy et al. (2004), os quais verificaram que deltametrina (0,0125 g i.a.L⁻¹), do mesmo grupo químico, diminuiu a sobrevivência de larvas de primeiro instar, apresentando média de 38,3%.

TABELA 2 - Duração, em dias e viabilidade, em % (±EP) de ovos e sobrevivência de larvas de *Chrysoperla externa*, provenientes dos ovos tratados com acaricidas. Temperatura 25±2°C, UR 70±10% e fotofase 12 horas.

Tuotomontos	Fase	de ovo	Fase de larva			
Tratamentos	Duração	Viabilidade	Duração	Sobrevivência		
Testemunha (água)	5,0±0,00 a	95,0±1,16 b	8,7±0,10 a	98,3±0,39 b		
Espirodiclofeno 0,12 g i.a.L ⁻¹	5,0±0,00 a	85,0±2,59 b	9,6±0,17 a	97,5±0,62 b		
Fenpropatrina 0,15 g i.a.L ⁻¹	5,0±0,00 a	85,0±2,59 b	$10,9\pm0,54$ a	98,1±0,44 b		
Fenpropatrina 0,3 g i.a.L ⁻¹	$4,9\pm0,02$ a	70,0±2,67 a	$9,5\pm0,10a$	86,8±1,05 a		
Enxofre 4,0 g i.a.L ⁻¹	$4,9\pm0,03$ a	90,0±1,89 b	$9,0\pm0,09$ a	98,3±0,59 b		
Enxofre 8,0 g i.a.L ⁻¹	$4,9\pm0,02$ a	87,5±1,86 b	$9,3\pm0,14$ a	95,1±0,74 b		
Abamectina 0,0067 g i.a.L ⁻¹	5,0±0,00 a	65,0±2,59 a	9,5±0,11 a	97,6±0,57 b		
Abamectina 0,0225 g i.a.L ⁻¹	5,0±0,01 a	57,5±2,48 a	9,1±0,08 a	96,5±0,61 b		
CV (%)	-	23,0	-	5,4		

Médias seguidas pela mesma letra na coluna não diferem significativamente entre si, pelo teste de Scott e Knott (P<0,05).

TABELA 3 - Duração, em dias e sobrevivência, em % (±EP) de *Chrysoperla externa* na fase de larva, provenientes de ovos tratados com acaricidas. Temperatura 25±2°C, UR 70±10% e fotofase 12 horas.

Tratamentos	Primeiro instar		Segundo instar		Terceiro instar		
Tratamentos	Duração	Sobrevivência	Duração	Sobrevivência	Duração	Sobrevivência	
Testemunha (água)	3,5±0,04 a	95,0±1,16 b	2,7±0,02 a	100,0±0,00 a	2,4±0,04 a	100,0±0,00 a	
Espirodiclofeno 0,12 g i.a.L ⁻¹	$4,3\pm0,09$ a	95,0±1,77 b	2,9±0,02 a	97,5±0,88 a	$2,5\pm0,06$ a	100,0±0,00 a	
Fenpropatrina 0,15 g i.a.L ⁻¹	$5,3\pm0,42$ a	94,4±1,31 b	3,0±0,07 a	100,0±0,00 a	$2,6\pm0,05$ a	100,0±0,00 a	
Fenpropatrina 0,3 g i.a.L ⁻¹	4,0±0,01 a	60,3±3,14 a	3,2±0,03 b	100,0±0,00 a	$2,4\pm0,06$ a	100,0±0,00 a	
Enxofre 4,0 g i.a.L ⁻¹	4,0±0,01 a	95,0±1,77 b	2,9±0,02 a	100,0±0,00 a	2,1±0,06 a	100,0±0,00 a	
Enxofre 8,0 g i.a.L ⁻¹	$3,9\pm0,04$ a	90,8±1,66 b	3,4±0,03 b	97,5±0,88 a	2,1±0,07 a	96,9±1,10 a	
Abamectina 0,0067 g i.a.L ⁻¹	4,1±0,02 a	92,7±1,71 b	3,0±0,02 a	100,0±0,00 a	$2,4\pm0,06$ a	100,0±0,00 a	
Abamectina 0,0225 g i.a.L ⁻¹	$4,0\pm0,00$ a	89,6±1,83 b	3,0±0,01 a	100,0±0,00 a	2,2±0,07 a	100,0±0,00 a	
CV (%)	-	16,8	7,8	-	-	-	

Médias seguidas pela mesma letra na coluna não diferem significativamente entre si, pelo teste de Scott e Knott (P<0,05).

Para o segundo e o terceiro instares e também para pré-pupas e pupas de *C. externa*, os acaricidas não afetaram a sobrevivência (Tabelas 3 e 4), com médias próximas às obtidas por Godoy et al. (2004), que observaram que abamectina 0,0054 g i.a.L⁻¹ e deltametrina 0,0125 g i.a.L⁻¹ não afetaram a sobrevivência para o segundo e terceiro instares e também para pupas de *C. externa* que apresentaram médias de 95,0%, 100,0% e 100,0%, respectivamente.

TABELA 4 - Duração, em dias e sobrevivência, em % (±EP) de pré-pupas e pupas de *Chrysoperla externa*, provenientes dos ovos tratados com acaricidas. Temperatura 25±2°C, UR 70±10% e fotofase 12 horas.

Tratamentos	Fase	de pré-pupa	Fase de pupa		
Tratamentos	Duração	Sobrevivência	Duração	Sobrevivência	
Testemunha (água)	3,6±0,05 a	100,0±0,00 a	8,1±0,07 b	93,7±1,45 a	
Espirodiclofeno 0,12 g i.a.L ⁻¹	3,5±0,04 a	100,0±0,00 a	$5,8\pm0,09$ a	$88,7\pm2,26$ a	
Fenpropatrina 0,15 g i.a.L ⁻¹	3,7±0,03 a	100,0±0,00 a	$7,8\pm0,05$ b	85,7±4,37 a	
Fenpropatrina 0,3 g i.a.L ⁻¹	4,3±0,06 b	100,0±0,00 a	$5,9\pm0,11$ a	$88,7\pm2,26$ a	
Enxofre 4,0 g i.a.L ⁻¹	2,7±0,03 a	100,0±0,00 a	8,1±0,03 b	100,0±0,00 a	
Enxofre 8,0 g i.a.L ⁻¹	3,6±0,02 a	100,0±0,00 a	8,0±0,04 b	100,0±0,00 a	
Abamectina 0,0067 g i.a.L ⁻¹	3,7±0,04 a	100,0±0,00 a	8,2±0,05 b	100,0±0,00 a	
Abamectina 0,0225 g i.a.L ⁻¹	3,6±0,06 a	100,0±0,00 a	7,8±0,04 b	100,0±0,00 a	
CV (%)	9,3	=	6,8	-	

Médias seguidas pela mesma letra na coluna não diferem significativamente entre si, pelo teste de Scott e Knott (P<0,05).

A razão sexual de adultos de *C. externa* provenientes dos ovos tratados não foi afetada pela ação dos produtos (Figura 1), variando de 0,33 a 0,56, resultados que corroboram com os de Silva (2004), que verificou razão sexual variando de 0,39 a 0,52.

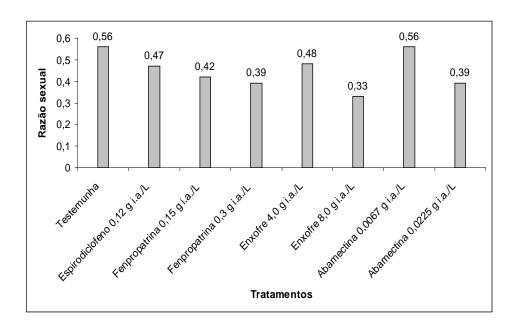


FIGURA 1 - Razão sexual de Chrysoperla externa oriundo de ovos tratados com acaricidas (Teste F; P>0,99).

Levando-se em consideração o efeito total (E) dos acaricidas sobre fêmeas oriundas de ovos tratados, todos foram enquadrados na classe 2 (moderadamente nocivo) (Tabela 5), com exceção do tratamento com fenpropatrina (0,3 g i.a.L⁻¹), que se mostrou nocivo (classe 3) a *C. externa*. Esses resultados assemelham-se aos de Godoy (2002), que constatou moderada nocividade de deltametrina (0,0125 g i.a.L⁻¹) e com os de Bueno (2001), que verificou alta toxicidade do produto neonicotinoide imidacloprid (0,035 a 0,21 g i.a.L⁻¹), sendo enquadrado na classe 4, para essa mesma espécie de crisopídeo.

TABELA 5 - Mortalidade, em % de *Chrysoperla externa*, número médio de ovos/dia/fêmea, viabilidade de ovos, em %, efeito total (E) e toxicidade dos compostos para ovos. Temperatura 25±2°C, UR 70±10% e fotofase 12 horas.

Tratamentos	Nº inicial de ovos	M^1	Mc^2	R'3	R",4	E^5	Classe ⁶
Testemunha (água)	40	15,0	-	1	1	-	-
Espirodiclofeno 0,12 g i.a.L ⁻¹	40	52,5	44,1	0,6	0,9	66,4	2
Fenpropatrina 0,15 g i.a.L ⁻¹	40	50,0	41,1	0,6	0,9	69,7	2
Fenpropatrina 0,3 g i.a.L ⁻¹	40	70,0	64,7	0,4	0,8	87,1	3
Enxofre 4,0 g i.a.L ⁻¹	40	25,0	11,8	0,7	0,9	41,6	2
Enxofre 8,0 g i.a.L ⁻¹	40	32,5	20,6	0,7	0,8	58,7	2
Abamectina 0,0067 g i.a.L ⁻¹	40	60,0	52,9	0,8	1,0	62,3	2
Abamectina 0,0225 g i.a.L ⁻¹	40	55,0	47,1	0,6	1,0	66,5	2

¹ Mortalidade (%) acumulada de insetos até a emergência de adultos.

CONCLUSÕES

O acaricida fenpropatrina (0,3 g i.a.L⁻¹) é nocivo ao crisopídeo *C. externa* em sua fase embrionária. Fenpropatrina (0,15 g i.a.L⁻¹), espirodiclofeno, enxofre e abamectina são moderadamente nocivos ao predador. Novos testes em condições de casa de vegetação e de campo devem ser realizados para a comprovação da toxicidade desses compostos.

² Mortalidade (%) acumulada de insetos até a emergência de adultos, corrigida pela fórmula de Abbott (1925).

 $^{^3}$ $N^{\underline{o}}$ médio de ovos/dia/fêmea durante quatro semanas consecutivas, a partir do início de oviposição.

⁴ Viabilidade (%) dos ovos durante quatro semanas consecutivas.

⁵ Efeito total dos compostos (%).

⁶ Classe de toxicidade da IOBC: classe = 2 moderadamente nocivo ($30 \le E \le 79\%$), classe 3 = nocivo ($80 \le E \le 99\%$).

AGRADECIMENTOS

Ao CNPq, pela concessão de bolsa de mestrado ao primeiro autor.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABBOTT, W. S. A method of computing the effectiveness of an insecticide. **Journal of Economic Entomology**, Lanham, v. 18, n. 1, p. 265-267, 1925.
- BOLLER, E. F.; VOGT, H.; TERNES, P.; MALAVOLTA, C. **Working document on selectivity of pesticides**. IOBC database on selectivity of pesticides, 2005. Disponível em: http://www.iobc.ch/2005/Working%20Document%20Pesticides_Explanations.pdf>. Acesso em: 20 out. 2008.
- BUENO, A. F. **Seletividade de inseticidas e acaricidas utilizados na cultura dos citros para** *Chrysoperla externa* **(Hagen, 1861) (Neuroptera: Chrysopidae) em condições de laboratório.** 2001. 88 p. Dissertação (Mestrado em Entomologia) Universidade Estadual de São Paulo, Jaboticabal, SP.
- CARVALHO, G. A.; BEZERRA, D.; SOUZA, B.; CARVALHO, C. F. Efeitos de inseticidas usados na cultura do algodoeiro sobre *Chrysoperla externa* (Hagen) (Neuroptera: Chrysopidae). **Neotropical Entomology**, Londrina, v. 32, n. 4, p. 699-706, out./dez. 2003.
- CARVALHO, G. A.; CARVALHO, C. F.; SOUZA, B.; ULHÔA, J. L. R. Seletividade de inseticidas a *Chrysoperla externa* (Hagen) (Neuroptera: Chrysopidae). **Neotropical Entomology**, Londrina, v. 31, n. 4, p. 615-621, out./dez. 2002.
- FONSECA, A. R.; CARVALHO, C. F.; SOUZA, B. Capacidade predatória e aspectos biológicos das fases imaturas de *Chrysoperla externa* (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com *Schizaphis graminum* (Rondani, 1852) (Hemiptera: Aphididae) em diferentes temperaturas. **Ciência e Agrotecnologia**, Lavras, v. 25, n. 2, p. 251-263, mar./abr. 2001.
- FRAGOSO, D. B.; JUNQUEIRA FILHO, P.; PEREIRA FILHO, A.; BADJI, C. A. Ação de inseticidas organofosforados utilizados no controle de *Leucoptera coffeella* (Guérin-Mèneville) (Lepidoptera: Lyonetiidae) sobre o ácaro predador *Iphiseiodes zuluagai* Denmark & Muma (Acari: Phytoseiidae). **Neotropical Entomology**, Londrina, v. 31, n. 3, p. 463-467, 2002.
- FREITAS, S. O uso de crisopídeos no controle biológico de pragas. Jaboticabal: Funep, 2001. 66 p.
- GODOY, M. S. Seletividade de alguns produtos fitossanitários utilizados na cultura dos citros a *Chrysoperla externa* (Hagen, 1861) (Neuroptera: Chrysopidae). 2002. 92 p. Dissertação (Mestrado em Entomologia) Universidade Federal de Lavras, Lavras, MG.
- GODOY, M. S.; CARVALHO, G. A.; MORAES, J. C.; JÚNIOR, M. G.; MORAIS, A. A.; COSME, L. V. Seletividade de inseticidas utilizados na cultura dos citros para ovos e larvas de *Chrysoperla externa* (Hagen) (Neuroptera: Chrysopidae). **Neotropical Entomology**, Londrina, v. 33, n. 5, p. 639-646, set./out. 2004.
- MAIA, W. J. M. S.; CARVALHO, C. F.; SOUZA, B. Exigências térmicas de *Chrysoperla externa* (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com *Schizaphis graminum* (Rondani, 1852) (Homoptera: Aphididae) em condições de laboratório. **Ciência e Agrotecnologia**, Lavras, v. 24, n. 1, p. 81-86, jan./mar. 2000.
- REIS, P. R.; SOUZA, J. C.; VENZON, M. Manejo ecológico das principais pragas do cafeeiro. **Informe Agropecuário**, Belo Horizonte, v. 23, n. 214/215, p. 83-89, 2002.
- SCOTT, A. J.; KNOTT, M. A. A cluster analyses method for grouping means in the analyses of variance. **Biometrics**, Washington, v. 30, n. 3, p. 502-512, Sept. 1974.
- SILVA, G. A.; CARVALHO, C. F.; SOUZA, B. Aspectos biológicos de *Chrysoperla externa* (Hagen, 1861) (Neuroptera: Chrysopidae) alimentada com lagartas de *Alabama argillacea* (Hübner, 1818) (Lepidoptera: Noctuidae). **Ciência e Agrotecnologia**, Lavras, v. 26, n. 4, p. 682-698, jul./ago. 2002.
- SILVA, R. A. Flutuação populacional de *Chrysoperla externa* (Hagen, 1861) Neuroptera: Chrysopidae) em cafeeiros, sua capacidade predatória sobre *Brevipalpus phoenicis* (Geijskes, 1939) (Acari: Tenuipalpidae) e seletividade de produtos a esse predador. 2004. 110p. Tese (Doutorado em Entomologia) Universidade Federal de Lavras, Lavras, MG.
- VOGT, H. Untersuchungen zu nebenwirkungen von insektiziden und akariziden auf *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae). **Mededelingen Rijks Faculteit Landbouwwetenschappen te Gent**, Belgium, v. 57, n. 2b, p. 559-567, 1992.